Algebra Beispiele

Vereinfache ((x^2-81)/(x^2-14x+45)*(x^2-12x+35)/(-x-9))÷((7-x)/-4)
Schritt 1
Um durch einen Bruch zu teilen, multipliziere mit seinem Kehrwert.
Schritt 2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 4.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.2
Faktorisiere aus heraus.
Schritt 5.1.3
Kürze den gemeinsamen Faktor.
Schritt 5.1.4
Forme den Ausdruck um.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2
Forme den Ausdruck um.
Schritt 5.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Faktorisiere aus heraus.
Schritt 5.4.2
Schreibe als um.
Schritt 5.4.3
Faktorisiere aus heraus.
Schritt 5.4.4
Kürze den gemeinsamen Faktor.
Schritt 5.4.5
Dividiere durch .
Schritt 5.5
Schreibe als um.
Schritt 5.6
Wende das Distributivgesetz an.
Schritt 5.7
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.7.1
Mutltipliziere mit .
Schritt 5.7.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.8
Wende das Distributivgesetz an.
Schritt 6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Kombiniere und .
Schritt 7
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Kombiniere und .
Schritt 7.3
Mutltipliziere mit .
Schritt 8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9
Stelle die Faktoren in um.
Schritt 10
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Faktorisiere aus heraus.
Schritt 10.2
Faktorisiere aus heraus.
Schritt 10.3
Faktorisiere aus heraus.
Schritt 11
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Faktorisiere aus heraus.
Schritt 11.2
Schreibe als um.
Schritt 11.3
Faktorisiere aus heraus.
Schritt 11.4
Stelle die Terme um.
Schritt 11.5
Kürze den gemeinsamen Faktor.
Schritt 11.6
Dividiere durch .
Schritt 12
Mutltipliziere mit .