Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3
Schritt 3.1
Schreibe als um.
Schritt 3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.3
Plus oder Minus ist .
Schritt 4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 7
Fasse die Lösungen zusammen.
Schritt 8
Schritt 8.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 8.2
Löse nach auf.
Schritt 8.2.1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 8.2.2
Setze gleich und löse nach auf.
Schritt 8.2.2.1
Setze gleich .
Schritt 8.2.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 8.2.3
Setze gleich und löse nach auf.
Schritt 8.2.3.1
Setze gleich .
Schritt 8.2.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 8.2.4
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 8.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 9
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 10
Schritt 10.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 10.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 10.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 10.1.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 10.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 10.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 10.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 10.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 10.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 10.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 10.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 10.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 10.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 10.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 10.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 10.4.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 10.5
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Wahr
Falsch
Falsch
Wahr
Wahr
Falsch
Falsch
Schritt 11
Die Lösung besteht aus allen wahren Intervallen.
oder oder
Schritt 12
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 13