Algebra Beispiele

Stelle graphisch dar y=-3/2 Quadratwurzel von x-4
Schritt 1
Bestimme den Definitionsbereich von , sodass eine Liste von -Werten ausgewählt werden kann, um eine Liste von Punkten zu erzeugen, die dazu dient, die Wurzelfunktion graphisch darzustellen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 2
Um den Endpunkt des Wurzelausdrucks zu ermitteln, setze den -Wert , welcher der kleinste Wert im Definitionsbereich ist, in ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Schreibe als um.
Schritt 2.2.1.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.2.1.2
Mutltipliziere mit .
Schritt 2.2.1.3
Dividiere durch .
Schritt 2.2.1.4
Mutltipliziere mit .
Schritt 2.2.2
Subtrahiere von .
Schritt 2.2.3
Die endgültige Lösung ist .
Schritt 3
Der Endpunkt des Wurzelausdrucks ist .
Schritt 4
Wähle einige -Werte aus dem Definitionsbereich. Es wäre nützlicher, die Werte so zu wählen, dass sie nahe beim -Wert des Endpunktes des Wurzelausdrucks liegen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Jede Wurzel von ist .
Schritt 4.1.2.1.2
Mutltipliziere mit .
Schritt 4.1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.2.3
Kombiniere und .
Schritt 4.1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.5.1
Mutltipliziere mit .
Schritt 4.1.2.5.2
Subtrahiere von .
Schritt 4.1.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.2.7
Die endgültige Lösung ist .
Schritt 4.2
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2.2
Die endgültige Lösung ist .
Schritt 4.3
Die Quadratwurzelfunktion kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden
Schritt 5