Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2
Schritt 2.1
Der genau Wert von ist .
Schritt 3
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 4
Schritt 4.1
Subtrahiere von .
Schritt 4.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 5
Schritt 5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 5.2
Ersetze durch in der Formel für die Periode.
Schritt 5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.4
Dividiere durch .
Schritt 6
Schritt 6.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 6.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.3
Kombiniere Brüche.
Schritt 6.3.1
Kombiniere und .
Schritt 6.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.4
Vereinfache den Zähler.
Schritt 6.4.1
Mutltipliziere mit .
Schritt 6.4.2
Subtrahiere von .
Schritt 6.5
Liste die neuen Winkel auf.
Schritt 7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 8
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
Schritt 9
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 10
Schritt 10.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 10.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 10.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 10.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 10.2
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Wahr
Schritt 11
Die Lösung besteht aus allen wahren Intervallen.
, für jede Ganzzahl
Schritt 12