Algebra Beispiele

Finde die Nullstellen x^4-2x^2
Schritt 1
Setze gleich .
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Schreibe als um.
Schritt 2.1.2
Es sei . Ersetze für alle .
Schritt 2.1.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Faktorisiere aus heraus.
Schritt 2.1.3.2
Faktorisiere aus heraus.
Schritt 2.1.3.3
Faktorisiere aus heraus.
Schritt 2.1.4
Ersetze alle durch .
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Setze gleich .
Schritt 2.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1
Schreibe als um.
Schritt 2.3.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.3.2.2.3
Plus oder Minus ist .
Schritt 2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.4.2.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.4.2.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.4.2.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 4