Algebra Beispiele

Ermittle die Umkehrfunktion y=1/(2x)
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 2.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Multipliziere jeden Term in mit .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.3.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.2.3
Forme den Ausdruck um.
Schritt 2.3.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.3.2
Forme den Ausdruck um.
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Schreibe die Gleichung als um.
Schritt 2.4.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.1.2
Forme den Ausdruck um.
Schritt 2.4.2.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.2
Dividiere durch .
Schritt 3
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Kombiniere und .
Schritt 4.2.4
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.2
Forme den Ausdruck um.
Schritt 4.2.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.2.6
Mutltipliziere mit .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Kombiniere und .
Schritt 4.3.4
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.4.2
Forme den Ausdruck um.
Schritt 4.3.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.3.6
Mutltipliziere mit .
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .