Algebra Beispiele

x 구하기 (2x^2)/(x^2+5x)+1/x=5/(x^2+5x)
Schritt 1
Faktorisiere jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3
Forme den Ausdruck um.
Schritt 1.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Faktorisiere aus heraus.
Schritt 1.3.2
Faktorisiere aus heraus.
Schritt 1.3.3
Faktorisiere aus heraus.
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Da sowohl Zahlen als auch Variablen enthält, gibt es vier Schritte, um das kgV zu ermitteln. Bestimme das kgV für den numerischen, variablen und zusammengesetzten Teil. Multipliziere sie dann miteinander.
Schritte, um das kgV für zu finden, sind:
1. Finde das kgV für den numerischen Teil .
2. Finde das kgV für den variablen Teil .
Finde das kgV für den zusammengesetzten variablen Teil .
4. Multipliziere jedes kgV miteinander.
Schritt 2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.6
Der Teiler von ist selbst.
occurs time.
Schritt 2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.8
Der Teiler von ist selbst.
occurs time.
Schritt 2.9
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.10
Das kleinste gemeinsame Vielfache einer Reihe von Zahlen ist die kleinste Zahl, von der die Zahlen Teiler sind.
Schritt 3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Faktorisiere aus heraus.
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.3
Forme den Ausdruck um.
Schritt 3.2.1.2
Potenziere mit .
Schritt 3.2.1.3
Potenziere mit .
Schritt 3.2.1.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.5
Addiere und .
Schritt 3.2.1.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.6.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.6.2
Forme den Ausdruck um.
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2
Forme den Ausdruck um.
Schritt 4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Subtrahiere von .
Schritt 4.2.2
Addiere und .
Schritt 4.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Faktorisiere aus heraus.
Schritt 4.3.2
Potenziere mit .
Schritt 4.3.3
Faktorisiere aus heraus.
Schritt 4.3.4
Faktorisiere aus heraus.
Schritt 4.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.5
Setze gleich .
Schritt 4.6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Setze gleich .
Schritt 4.6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.6.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.2.1
Teile jeden Ausdruck in durch .
Schritt 4.6.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.6.2.2.2.1.2
Dividiere durch .
Schritt 4.6.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 5
Schließe die Lösungen aus, die nicht erfüllen.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: