Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Da sowohl Zahlen als auch Variablen enthält, sind zwei Schritte notwendig, um das kgV zu finden. Finde das kgV für den numerischen Teil und anschließend für den variablen Teil .
Schritt 1.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.5
Die Primfaktoren von sind .
Schritt 1.5.1
hat Faktoren von und .
Schritt 1.5.2
hat Faktoren von und .
Schritt 1.6
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.8
Multipliziere .
Schritt 1.8.1
Mutltipliziere mit .
Schritt 1.8.2
Mutltipliziere mit .
Schritt 1.9
Der Teiler von ist selbst.
occurs time.
Schritt 1.10
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 1.11
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache jeden Term.
Schritt 2.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.1.2
Multipliziere .
Schritt 2.2.1.2.1
Kombiniere und .
Schritt 2.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.3.2
Forme den Ausdruck um.
Schritt 2.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.2.1.4.2
Faktorisiere aus heraus.
Schritt 2.2.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.4.4
Forme den Ausdruck um.
Schritt 2.2.1.5
Potenziere mit .
Schritt 2.2.1.6
Potenziere mit .
Schritt 2.2.1.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.1.8
Addiere und .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Multipliziere .
Schritt 2.3.1.1
Mutltipliziere mit .
Schritt 2.3.1.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.2.2.2
Dividiere durch .
Schritt 3.2.3
Vereinfache die rechte Seite.
Schritt 3.2.3.1
Dividiere durch .
Schritt 3.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4
Vereinfache .
Schritt 3.4.1
Schreibe als um.
Schritt 3.4.1.1
Faktorisiere aus heraus.
Schritt 3.4.1.2
Schreibe als um.
Schritt 3.4.2
Ziehe Terme aus der Wurzel heraus.
Schritt 3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: