Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.1.2.1
Multipliziere mit .
Schritt 2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2.3
Forme den Ausdruck um.
Schritt 2.3.1.2.4
Dividiere durch .
Schritt 2.3.2
Potenziere mit .
Schritt 3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 4.3
Vereinfache.
Schritt 4.3.1
Bringe auf die linke Seite von .
Schritt 4.3.2
Potenziere mit .
Schritt 5
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6
Schritt 6.1
Setze gleich .
Schritt 6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 7
Schritt 7.1
Setze gleich .
Schritt 7.2
Löse nach auf.
Schritt 7.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 7.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 7.2.3
Vereinfache.
Schritt 7.2.3.1
Vereinfache den Zähler.
Schritt 7.2.3.1.1
Potenziere mit .
Schritt 7.2.3.1.2
Multipliziere .
Schritt 7.2.3.1.2.1
Mutltipliziere mit .
Schritt 7.2.3.1.2.2
Mutltipliziere mit .
Schritt 7.2.3.1.3
Subtrahiere von .
Schritt 7.2.3.1.4
Schreibe als um.
Schritt 7.2.3.1.5
Schreibe als um.
Schritt 7.2.3.1.6
Schreibe als um.
Schritt 7.2.3.1.7
Schreibe als um.
Schritt 7.2.3.1.7.1
Faktorisiere aus heraus.
Schritt 7.2.3.1.7.2
Schreibe als um.
Schritt 7.2.3.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 7.2.3.1.9
Bringe auf die linke Seite von .
Schritt 7.2.3.2
Mutltipliziere mit .
Schritt 7.2.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 7.2.4.1
Vereinfache den Zähler.
Schritt 7.2.4.1.1
Potenziere mit .
Schritt 7.2.4.1.2
Multipliziere .
Schritt 7.2.4.1.2.1
Mutltipliziere mit .
Schritt 7.2.4.1.2.2
Mutltipliziere mit .
Schritt 7.2.4.1.3
Subtrahiere von .
Schritt 7.2.4.1.4
Schreibe als um.
Schritt 7.2.4.1.5
Schreibe als um.
Schritt 7.2.4.1.6
Schreibe als um.
Schritt 7.2.4.1.7
Schreibe als um.
Schritt 7.2.4.1.7.1
Faktorisiere aus heraus.
Schritt 7.2.4.1.7.2
Schreibe als um.
Schritt 7.2.4.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 7.2.4.1.9
Bringe auf die linke Seite von .
Schritt 7.2.4.2
Mutltipliziere mit .
Schritt 7.2.4.3
Ändere das zu .
Schritt 7.2.4.4
Schreibe als um.
Schritt 7.2.4.5
Faktorisiere aus heraus.
Schritt 7.2.4.6
Faktorisiere aus heraus.
Schritt 7.2.4.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 7.2.5.1
Vereinfache den Zähler.
Schritt 7.2.5.1.1
Potenziere mit .
Schritt 7.2.5.1.2
Multipliziere .
Schritt 7.2.5.1.2.1
Mutltipliziere mit .
Schritt 7.2.5.1.2.2
Mutltipliziere mit .
Schritt 7.2.5.1.3
Subtrahiere von .
Schritt 7.2.5.1.4
Schreibe als um.
Schritt 7.2.5.1.5
Schreibe als um.
Schritt 7.2.5.1.6
Schreibe als um.
Schritt 7.2.5.1.7
Schreibe als um.
Schritt 7.2.5.1.7.1
Faktorisiere aus heraus.
Schritt 7.2.5.1.7.2
Schreibe als um.
Schritt 7.2.5.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 7.2.5.1.9
Bringe auf die linke Seite von .
Schritt 7.2.5.2
Mutltipliziere mit .
Schritt 7.2.5.3
Ändere das zu .
Schritt 7.2.5.4
Schreibe als um.
Schritt 7.2.5.5
Faktorisiere aus heraus.
Schritt 7.2.5.6
Faktorisiere aus heraus.
Schritt 7.2.5.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 8
Die endgültige Lösung sind alle Werte, die wahr machen.