Algebra Beispiele

Vereinfache (2x^2-3x-5)/(25-4x^2)
Schritt 1
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Schreibe um als plus
Schritt 1.1.3
Wende das Distributivgesetz an.
Schritt 1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Schreibe als um.
Schritt 2.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2.4
Mutltipliziere mit .
Schritt 3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Schreibe als um.
Schritt 3.1.3
Faktorisiere aus heraus.
Schritt 3.1.4
Schreibe als um.
Schritt 3.1.5
Stelle die Terme um.
Schritt 3.1.6
Kürze den gemeinsamen Faktor.
Schritt 3.1.7
Forme den Ausdruck um.
Schritt 3.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Bringe auf die linke Seite von .
Schritt 3.2.2
Ziehe das Minuszeichen vor den Bruch.