Gib eine Aufgabe ein ...
Algebra Beispiele
,
Schritt 1
Schritt 1.1
Ermittle die Eigenschaften der gegebenen Parabel.
Schritt 1.1.1
Schreibe die Gleichung in Scheitelform um.
Schritt 1.1.1.1
Wende die quadratische Ergänzung auf an.
Schritt 1.1.1.1.1
Wende die Form an, um die Werte für , und zu ermitteln.
Schritt 1.1.1.1.2
Betrachte die Scheitelform einer Parabel.
Schritt 1.1.1.1.3
Ermittle den Wert von mithilfe der Formel .
Schritt 1.1.1.1.3.1
Setze die Werte von und in die Formel ein.
Schritt 1.1.1.1.3.2
Kürze den gemeinsamen Teiler von und .
Schritt 1.1.1.1.3.2.1
Faktorisiere aus heraus.
Schritt 1.1.1.1.3.2.2
Kürze die gemeinsamen Faktoren.
Schritt 1.1.1.1.3.2.2.1
Faktorisiere aus heraus.
Schritt 1.1.1.1.3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.1.1.3.2.2.3
Forme den Ausdruck um.
Schritt 1.1.1.1.3.2.2.4
Dividiere durch .
Schritt 1.1.1.1.4
Ermittle den Wert von mithilfe der Formel .
Schritt 1.1.1.1.4.1
Setze die Werte von , , und in die Formel ein.
Schritt 1.1.1.1.4.2
Vereinfache die rechte Seite.
Schritt 1.1.1.1.4.2.1
Vereinfache jeden Term.
Schritt 1.1.1.1.4.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.1.1.1.4.2.1.2
Mutltipliziere mit .
Schritt 1.1.1.1.4.2.1.3
Dividiere durch .
Schritt 1.1.1.1.4.2.1.4
Mutltipliziere mit .
Schritt 1.1.1.1.4.2.2
Addiere und .
Schritt 1.1.1.1.5
Setze die Werte von , und in die Scheitelform ein.
Schritt 1.1.1.2
Setze gleich der neuen rechten Seite.
Schritt 1.1.2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 1.1.3
Da der Wert von positiv ist, ist die Parabel nach oben geöffnet.
Öffnet nach Oben
Schritt 1.1.4
Ermittle den Scheitelpunkt .
Schritt 1.1.5
Berechne , den Abstand vom Scheitelpunkt zum Brennpunkt.
Schritt 1.1.5.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 1.1.5.2
Setze den Wert von in die Formel ein.
Schritt 1.1.5.3
Kürze den gemeinsamen Faktor von .
Schritt 1.1.5.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.5.3.2
Forme den Ausdruck um.
Schritt 1.1.6
Ermittle den Brennpunkt.
Schritt 1.1.6.1
Der Brennpunkt einer Parabel kann durch Addieren von zur y-Koordinate ermittelt werden, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 1.1.6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 1.1.7
Finde die Symmtrieachse durch Ermitteln der Geraden, die durch den Scheitelpunkt und den Brennpunkt verläuft.
Schritt 1.1.8
Finde die Leitlinie.
Schritt 1.1.8.1
Die Leitlinie einer Parabel ist die horizontale Gerade, die durch Subtrahieren von von der y-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 1.1.8.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 1.1.9
Wende die Eigenschaften der Parabel an, um die Parabel zu analysieren und graphisch darzustellen.
Richtung: Nach oben offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Richtung: Nach oben offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 1.2
Wähle einige -Werte aus und setze sie in die Gleichung ein, um die entsprechenden -Werte zu ermitteln. Die -Werte sollten um den Scheitelpunkt herum gewählt werden.
Schritt 1.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.2.2
Vereinfache das Ergebnis.
Schritt 1.2.2.1
Potenziere mit .
Schritt 1.2.2.2
Die endgültige Lösung ist .
Schritt 1.2.3
Der -Wert bei ist .
Schritt 1.2.4
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.2.5
Vereinfache das Ergebnis.
Schritt 1.2.5.1
Potenziere mit .
Schritt 1.2.5.2
Die endgültige Lösung ist .
Schritt 1.2.6
Der -Wert bei ist .
Schritt 1.2.7
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.2.8
Vereinfache das Ergebnis.
Schritt 1.2.8.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.2.8.2
Die endgültige Lösung ist .
Schritt 1.2.9
Der -Wert bei ist .
Schritt 1.2.10
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.2.11
Vereinfache das Ergebnis.
Schritt 1.2.11.1
Potenziere mit .
Schritt 1.2.11.2
Die endgültige Lösung ist .
Schritt 1.2.12
Der -Wert bei ist .
Schritt 1.2.13
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Schritt 1.3
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Richtung: Nach oben offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Richtung: Nach oben offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 2
Schritt 2.1
Benutze die Normalform, um die Steigung und den Schnittpunkt mit der y-Achse zu ermitteln.
Schritt 2.1.1
Die Normalform ist , wobei die Steigung und der Schnittpunkt mit der y-Achse ist.
Schritt 2.1.2
Ermittle die Werte von und unter Anwendung der Form .
Schritt 2.1.3
Die Steigung der Geraden ist der Wert von und der Schnittpunkt mit der y-Achse ist der Wert von .
Steigung:
Schnittpunkt mit der y-Achse:
Steigung:
Schnittpunkt mit der y-Achse:
Schritt 2.2
Ermittle 2 Punkte der Geraden.
Schritt 2.3
Zeichne die Gerade mithilfe der Steigung, des Schnittpunkt mit der y-Achses und zweier Punkte.
Steigung:
Schnittpunkt mit der y-Achse:
Steigung:
Schnittpunkt mit der y-Achse:
Schritt 3
Stelle jeden Graphen im gleichen Koordinatensystem dar.
Schritt 4