Algebra Beispiele

x 구하기 4(x-2)^-2=16
Schritt 1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Teile jeden Ausdruck in durch .
Schritt 1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2
Forme den Ausdruck um.
Schritt 1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Dividiere durch .
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Forme den Ausdruck um.
Schritt 4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.2
Dividiere durch .
Schritt 4.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Schreibe als um.
Schritt 4.4.2
Jede Wurzel von ist .
Schritt 4.4.3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.3.1
Schreibe als um.
Schritt 4.4.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 4.5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.5.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.5.2.3
Kombiniere und .
Schritt 4.5.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.5.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.2.5.1
Mutltipliziere mit .
Schritt 4.5.2.5.2
Addiere und .
Schritt 4.5.3
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 4.5.4
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.5.4.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.5.4.3
Kombiniere und .
Schritt 4.5.4.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.5.4.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.4.5.1
Mutltipliziere mit .
Schritt 4.5.4.5.2
Addiere und .
Schritt 4.5.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl: