Algebra Beispiele

n 구하기 (n^2-1)/(3n^2)=0.3325
Schritt 1
Faktorisiere jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.1
Faktorisiere aus heraus.
Schritt 3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2.3
Forme den Ausdruck um.
Schritt 3.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.3.2
Forme den Ausdruck um.
Schritt 3.2.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Wende das Distributivgesetz an.
Schritt 3.2.2.2
Wende das Distributivgesetz an.
Schritt 3.2.2.3
Wende das Distributivgesetz an.
Schritt 3.2.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1.1
Mutltipliziere mit .
Schritt 3.2.3.1.2
Bringe auf die linke Seite von .
Schritt 3.2.3.1.3
Schreibe als um.
Schritt 3.2.3.1.4
Mutltipliziere mit .
Schritt 3.2.3.1.5
Mutltipliziere mit .
Schritt 3.2.3.2
Addiere und .
Schritt 3.2.3.3
Addiere und .
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Mutltipliziere mit .
Schritt 4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.1.2
Subtrahiere von .
Schritt 4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Teile jeden Ausdruck in durch .
Schritt 4.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.2
Dividiere durch .
Schritt 4.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Dividiere durch .
Schritt 4.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4.5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Schreibe als um.
Schritt 4.5.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 4.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 4.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.