Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 2
Schritt 2.1
Vereinfache jeden Term.
Schritt 2.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2
Multipliziere .
Schritt 2.1.2.1
Mutltipliziere mit .
Schritt 2.1.2.2
Mutltipliziere mit .
Schritt 2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 2.4.1
Mutltipliziere mit .
Schritt 2.4.2
Mutltipliziere mit .
Schritt 2.4.3
Stelle die Faktoren von um.
Schritt 2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.6
Vereinfache den Zähler.
Schritt 2.6.1
Wende das Distributivgesetz an.
Schritt 2.6.2
Mutltipliziere mit .
Schritt 2.6.3
Mutltipliziere mit .
Schritt 2.6.4
Addiere und .
Schritt 3
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 4
Addiere zu beiden Seiten der Gleichung.
Schritt 5
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 6
Addiere zu beiden Seiten der Gleichung.
Schritt 7
Schritt 7.1
Teile jeden Ausdruck in durch .
Schritt 7.2
Vereinfache die linke Seite.
Schritt 7.2.1
Kürze den gemeinsamen Faktor von .
Schritt 7.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.2
Dividiere durch .
Schritt 8
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 9
Fasse die Lösungen zusammen.
Schritt 10
Schritt 10.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 10.2
Löse nach auf.
Schritt 10.2.1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 10.2.2
Setze gleich .
Schritt 10.2.3
Setze gleich und löse nach auf.
Schritt 10.2.3.1
Setze gleich .
Schritt 10.2.3.2
Löse nach auf.
Schritt 10.2.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 10.2.3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 10.2.3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 10.2.3.2.2.2
Vereinfache die linke Seite.
Schritt 10.2.3.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 10.2.3.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.3.2.2.2.1.2
Dividiere durch .
Schritt 10.2.4
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 10.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 11
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 12
Schritt 12.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 12.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 12.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 12.1.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 12.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 12.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 12.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 12.2.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 12.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 12.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 12.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 12.3.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 12.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 12.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 12.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 12.4.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 12.5
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Wahr
Falsch
Wahr
Falsch
Wahr
Schritt 13
Die Lösung besteht aus allen wahren Intervallen.
oder
Schritt 14
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 15