Algebra Beispiele

Vereinfache (1+ Quadratwurzel von 5)/(5+ Quadratwurzel von 5)
Schritt 1
Mutltipliziere mit .
Schritt 2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Mutltipliziere mit .
Schritt 2.2
Multipliziere den Nenner aus unter Verwendung der FOIL-Methode.
Schritt 2.3
Vereinfache.
Schritt 3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Wende das Distributivgesetz an.
Schritt 3.1.2
Wende das Distributivgesetz an.
Schritt 3.1.3
Wende das Distributivgesetz an.
Schritt 3.2
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Mutltipliziere mit .
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
Bringe auf die linke Seite von .
Schritt 3.2.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.4.1
Potenziere mit .
Schritt 3.2.1.4.2
Potenziere mit .
Schritt 3.2.1.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.4.4
Addiere und .
Schritt 3.2.1.5
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.5.1
Benutze , um als neu zu schreiben.
Schritt 3.2.1.5.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.1.5.3
Kombiniere und .
Schritt 3.2.1.5.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.5.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.5.4.2
Forme den Ausdruck um.
Schritt 3.2.1.5.5
Berechne den Exponenten.
Schritt 3.2.1.6
Mutltipliziere mit .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.2.3
Subtrahiere von .
Schritt 3.2.4
Addiere und .
Schritt 4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Faktorisiere aus heraus.
Schritt 4.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.3
Forme den Ausdruck um.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: