Algebra Beispiele

Ermittle die Umkehrfunktion A(b)=12*(b+9)/2
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Faktorisiere aus heraus.
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.3
Forme den Ausdruck um.
Schritt 3.2.2
Wende das Distributivgesetz an.
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Dividiere durch .
Schritt 3.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Dividiere durch .
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.1.2.3
Forme den Ausdruck um.
Schritt 5.2.3.1.2.4
Dividiere durch .
Schritt 5.2.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.2.2
Forme den Ausdruck um.
Schritt 5.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Subtrahiere von .
Schritt 5.2.4.2
Addiere und .
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Addiere und .
Schritt 5.3.3.2
Addiere und .
Schritt 5.3.4
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1.1
Faktorisiere aus heraus.
Schritt 5.3.4.1.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.1.3
Forme den Ausdruck um.
Schritt 5.3.4.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.2.2
Dividiere durch .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .