Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Mutltipliziere mit .
Schritt 2.2
Multipliziere den Nenner aus unter Verwendung der FOIL-Methode.
Schritt 2.3
Vereinfache.
Schritt 2.4
Kürze den gemeinsamen Teiler von und .
Schritt 2.4.1
Faktorisiere aus heraus.
Schritt 2.4.2
Kürze die gemeinsamen Faktoren.
Schritt 2.4.2.1
Faktorisiere aus heraus.
Schritt 2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.3
Forme den Ausdruck um.
Schritt 2.5
Kürze den gemeinsamen Teiler von und .
Schritt 2.5.1
Faktorisiere aus heraus.
Schritt 2.5.2
Kürze die gemeinsamen Faktoren.
Schritt 2.5.2.1
Faktorisiere aus heraus.
Schritt 2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.3
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 3.1.1
Wende das Distributivgesetz an.
Schritt 3.1.2
Wende das Distributivgesetz an.
Schritt 3.1.3
Wende das Distributivgesetz an.
Schritt 3.2
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Mutltipliziere mit .
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
Multipliziere .
Schritt 3.2.1.3.1
Potenziere mit .
Schritt 3.2.1.3.2
Potenziere mit .
Schritt 3.2.1.3.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.3.4
Addiere und .
Schritt 3.2.1.4
Schreibe als um.
Schritt 3.2.1.4.1
Benutze , um als neu zu schreiben.
Schritt 3.2.1.4.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.1.4.3
Kombiniere und .
Schritt 3.2.1.4.4
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.4.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.4.4.2
Forme den Ausdruck um.
Schritt 3.2.1.4.5
Berechne den Exponenten.
Schritt 3.2.1.5
Mutltipliziere mit .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.2.3
Subtrahiere von .
Schritt 3.2.4
Addiere und .
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Kürze die gemeinsamen Faktoren.
Schritt 4.2.1
Faktorisiere aus heraus.
Schritt 4.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.3
Forme den Ausdruck um.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: