Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Um durch einen Bruch zu teilen, multipliziere mit seinem Kehrwert.
Schritt 1.2
Vereinfache den Zähler.
Schritt 1.2.1
Schreibe als um.
Schritt 1.2.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.3
Vereinfache den Nenner.
Schritt 1.3.1
Schreibe als um.
Schritt 1.3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.4
Faktorisiere aus heraus.
Schritt 1.4.1
Faktorisiere aus heraus.
Schritt 1.4.2
Faktorisiere aus heraus.
Schritt 1.4.3
Faktorisiere aus heraus.
Schritt 1.5
Faktorisiere aus heraus.
Schritt 1.5.1
Faktorisiere aus heraus.
Schritt 1.5.2
Faktorisiere aus heraus.
Schritt 1.5.3
Faktorisiere aus heraus.
Schritt 1.6
Kürze den gemeinsamen Faktor von .
Schritt 1.6.1
Faktorisiere aus heraus.
Schritt 1.6.2
Faktorisiere aus heraus.
Schritt 1.6.3
Kürze den gemeinsamen Faktor.
Schritt 1.6.4
Forme den Ausdruck um.
Schritt 1.7
Kürze den gemeinsamen Faktor von .
Schritt 1.7.1
Faktorisiere aus heraus.
Schritt 1.7.2
Faktorisiere aus heraus.
Schritt 1.7.3
Kürze den gemeinsamen Faktor.
Schritt 1.7.4
Forme den Ausdruck um.
Schritt 1.8
Mutltipliziere mit .
Schritt 1.9
Bringe auf die linke Seite von .
Schritt 1.10
Bringe auf die linke Seite von .
Schritt 1.11
Faktorisiere aus heraus.
Schritt 1.11.1
Faktorisiere aus heraus.
Schritt 1.11.2
Faktorisiere aus heraus.
Schritt 1.11.3
Faktorisiere aus heraus.
Schritt 2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3
Schritt 3.1
Mutltipliziere mit .
Schritt 3.2
Stelle die Faktoren von um.
Schritt 3.3
Stelle die Faktoren von um.
Schritt 4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5
Schritt 5.1
Faktorisiere aus heraus.
Schritt 5.1.1
Stelle den Ausdruck um.
Schritt 5.1.1.1
Bewege .
Schritt 5.1.1.2
Stelle und um.
Schritt 5.1.1.3
Bewege .
Schritt 5.1.2
Faktorisiere aus heraus.
Schritt 5.1.3
Faktorisiere aus heraus.
Schritt 5.1.4
Faktorisiere aus heraus.
Schritt 5.2
Faktorisiere aus heraus.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.3
Wende das Distributivgesetz an.
Schritt 5.4
Bringe auf die linke Seite von .
Schritt 5.5
Wende das Distributivgesetz an.
Schritt 5.6
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.7
Bringe auf die linke Seite von .
Schritt 5.8
Subtrahiere von .
Schritt 5.8.1
Stelle und um.
Schritt 5.8.2
Subtrahiere von .
Schritt 5.9
Addiere und .
Schritt 5.10
Mutltipliziere mit .
Schritt 6
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Kürze die gemeinsamen Faktoren.
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.3
Forme den Ausdruck um.