Algebra Beispiele

Vereinfache ((2x^(n+1))^2x^(3-n))/(x^(2(n+1))(x^n)^2)
Schritt 1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere aus heraus.
Schritt 1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3
Forme den Ausdruck um.
Schritt 2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wende die Produktregel auf an.
Schritt 2.2
Potenziere mit .
Schritt 2.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.2
Wende das Distributivgesetz an.
Schritt 2.3.3
Bringe auf die linke Seite von .
Schritt 2.3.4
Mutltipliziere mit .
Schritt 2.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Mutltipliziere mit .
Schritt 2.5
Subtrahiere von .
Schritt 2.6
Subtrahiere von .
Schritt 2.7
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Bewege .
Schritt 2.7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.7.3
Addiere und .
Schritt 2.7.4
Addiere und .
Schritt 3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2
Bringe auf die linke Seite von .
Schritt 3.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Multipliziere mit .
Schritt 3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.3
Forme den Ausdruck um.
Schritt 3.2.2.4
Dividiere durch .