Algebra Beispiele

Vereinfache (4/(3x)+2/(x^2))/(x/(x+1)-4/(x+1))
Schritt 1
Multipliziere den Zähler und Nenner des Bruches mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Kombinieren.
Schritt 2
Wende das Distributivgesetz an.
Schritt 3
Vereinfache durch Kürzen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.3
Forme den Ausdruck um.
Schritt 3.3
Mutltipliziere mit .
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.3
Forme den Ausdruck um.
Schritt 3.5
Potenziere mit .
Schritt 3.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.7
Addiere und .
Schritt 3.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.8.2
Faktorisiere aus heraus.
Schritt 3.8.3
Kürze den gemeinsamen Faktor.
Schritt 3.8.4
Forme den Ausdruck um.
Schritt 3.9
Mutltipliziere mit .
Schritt 4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Faktorisiere aus heraus.
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.2
Bringe auf die linke Seite von .
Schritt 5
Vereinfache durch Herausfaktorisieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.2
Faktorisiere aus heraus.
Schritt 5.1.3
Faktorisiere aus heraus.
Schritt 5.2
Bringe auf die linke Seite von .