Algebra Beispiele

Finde alle komplexen Lösungen Quadratwurzel von 3tan(x)cot(x)+ Quadratwurzel von 3tan(x)-cot(x)-1=0
Schritt 1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 1.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 1.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze gleich .
Schritt 3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.2
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Der genau Wert von ist .
Schritt 3.2.4
Die Kotangens-Funktion ist im zweiten und vierten Quadranten negativ. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel aus , um die Lösung im dritten Quadranten zu bestimmen.
Schritt 3.2.5
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.5.1
Addiere zu .
Schritt 3.2.5.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 3.2.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 3.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.2.6.4
Dividiere durch .
Schritt 3.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze gleich .
Schritt 4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.2.1.2
Dividiere durch .
Schritt 4.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.3.1
Mutltipliziere mit .
Schritt 4.2.2.3.2
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.3.2.1
Mutltipliziere mit .
Schritt 4.2.2.3.2.2
Potenziere mit .
Schritt 4.2.2.3.2.3
Potenziere mit .
Schritt 4.2.2.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.2.3.2.5
Addiere und .
Schritt 4.2.2.3.2.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 4.2.2.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.2.3.2.6.3
Kombiniere und .
Schritt 4.2.2.3.2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.3.2.6.4.2
Forme den Ausdruck um.
Schritt 4.2.2.3.2.6.5
Berechne den Exponenten.
Schritt 4.2.3
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 4.2.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Der genau Wert von ist .
Schritt 4.2.5
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 4.2.6
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.6.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.2.6.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.6.2.1
Kombiniere und .
Schritt 4.2.6.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.6.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.6.3.1
Bringe auf die linke Seite von .
Schritt 4.2.6.3.2
Addiere und .
Schritt 4.2.7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 4.2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 4.2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.7.4
Dividiere durch .
Schritt 4.2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 5
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede Ganzzahl