Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Ersetze alle in durch .
Schritt 1.2
Vereinfache die linke Seite.
Schritt 1.2.1
Vereinfache .
Schritt 1.2.1.1
Vereinfache jeden Term.
Schritt 1.2.1.1.1
Schreibe als um.
Schritt 1.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 1.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 1.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 1.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 1.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 1.2.1.1.3.1
Vereinfache jeden Term.
Schritt 1.2.1.1.3.1.1
Mutltipliziere mit .
Schritt 1.2.1.1.3.1.2
Bringe auf die linke Seite von .
Schritt 1.2.1.1.3.1.3
Mutltipliziere mit .
Schritt 1.2.1.1.3.2
Addiere und .
Schritt 1.2.1.2
Addiere und .
Schritt 2
Schritt 2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2
Subtrahiere von .
Schritt 2.3
Faktorisiere die linke Seite der Gleichung.
Schritt 2.3.1
Faktorisiere aus heraus.
Schritt 2.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.2
Faktorisiere aus heraus.
Schritt 2.3.1.3
Faktorisiere aus heraus.
Schritt 2.3.1.4
Faktorisiere aus heraus.
Schritt 2.3.1.5
Faktorisiere aus heraus.
Schritt 2.3.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 2.3.2.1
Schreibe als um.
Schritt 2.3.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.3.2.3
Schreibe das Polynom neu.
Schritt 2.3.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2
Vereinfache die linke Seite.
Schritt 2.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.1.2
Dividiere durch .
Schritt 2.4.3
Vereinfache die rechte Seite.
Schritt 2.4.3.1
Dividiere durch .
Schritt 2.5
Setze gleich .
Schritt 2.6
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3
Schritt 3.1
Ersetze alle in durch .
Schritt 3.2
Vereinfache die rechte Seite.
Schritt 3.2.1
Addiere und .
Schritt 4
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 6