Algebra Beispiele

x 구하기 (2x+1)/2+x/3=5/6
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Mutltipliziere mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.3.4
Mutltipliziere mit .
Schritt 1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Wende das Distributivgesetz an.
Schritt 1.5.2
Mutltipliziere mit .
Schritt 1.5.3
Mutltipliziere mit .
Schritt 1.5.4
Bringe auf die linke Seite von .
Schritt 1.5.5
Addiere und .
Schritt 2
Da der Ausdruck auf jeder Seite der Gleichung den gleichen Nenner hat, müssen die Zähler gleich sein.
Schritt 3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Subtrahiere von .
Schritt 4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1
Faktorisiere aus heraus.
Schritt 4.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.2.1
Faktorisiere aus heraus.
Schritt 4.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.1.2.3
Forme den Ausdruck um.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: