Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Schritt 1.2.1
Vereinfache .
Schritt 1.2.1.1
Vereinfache jeden Term.
Schritt 1.2.1.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.2.1.1.2
Mutltipliziere mit .
Schritt 1.2.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 1.2.1.2.1
Addiere und .
Schritt 1.2.1.2.2
Addiere und .
Schritt 1.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.3
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 1.2.4
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 1.2.5
Vereinfache.
Schritt 1.2.5.1
Vereinfache den Zähler.
Schritt 1.2.5.1.1
Potenziere mit .
Schritt 1.2.5.1.2
Multipliziere .
Schritt 1.2.5.1.2.1
Mutltipliziere mit .
Schritt 1.2.5.1.2.2
Mutltipliziere mit .
Schritt 1.2.5.1.3
Subtrahiere von .
Schritt 1.2.5.1.4
Schreibe als um.
Schritt 1.2.5.1.4.1
Faktorisiere aus heraus.
Schritt 1.2.5.1.4.2
Schreibe als um.
Schritt 1.2.5.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 1.2.5.2
Mutltipliziere mit .
Schritt 1.2.5.3
Vereinfache .
Schritt 1.2.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 1.2.6.1
Vereinfache den Zähler.
Schritt 1.2.6.1.1
Potenziere mit .
Schritt 1.2.6.1.2
Multipliziere .
Schritt 1.2.6.1.2.1
Mutltipliziere mit .
Schritt 1.2.6.1.2.2
Mutltipliziere mit .
Schritt 1.2.6.1.3
Subtrahiere von .
Schritt 1.2.6.1.4
Schreibe als um.
Schritt 1.2.6.1.4.1
Faktorisiere aus heraus.
Schritt 1.2.6.1.4.2
Schreibe als um.
Schritt 1.2.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 1.2.6.2
Mutltipliziere mit .
Schritt 1.2.6.3
Vereinfache .
Schritt 1.2.6.4
Ändere das zu .
Schritt 1.2.7
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 1.2.7.1
Vereinfache den Zähler.
Schritt 1.2.7.1.1
Potenziere mit .
Schritt 1.2.7.1.2
Multipliziere .
Schritt 1.2.7.1.2.1
Mutltipliziere mit .
Schritt 1.2.7.1.2.2
Mutltipliziere mit .
Schritt 1.2.7.1.3
Subtrahiere von .
Schritt 1.2.7.1.4
Schreibe als um.
Schritt 1.2.7.1.4.1
Faktorisiere aus heraus.
Schritt 1.2.7.1.4.2
Schreibe als um.
Schritt 1.2.7.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 1.2.7.2
Mutltipliziere mit .
Schritt 1.2.7.3
Vereinfache .
Schritt 1.2.7.4
Ändere das zu .
Schritt 1.2.8
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der x-Achse:
Schritt 2
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.2.1.1.2
Mutltipliziere mit .
Schritt 2.2.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.2.1.2.1
Addiere und .
Schritt 2.2.1.2.2
Addiere und .
Schritt 2.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2.3
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 2.2.3.1
Schreibe als um.
Schritt 2.2.3.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.2.3.3
Schreibe das Polynom neu.
Schritt 2.2.3.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.2.4
Setze gleich .
Schritt 2.2.5
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Schnittpunkt(e) mit der y-Achse in Punkt-Form.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 4