Gib eine Aufgabe ein ...
Algebra Beispiele
Vereinfache
Schritt 1
Um durch einen Bruch zu teilen, multipliziere mit seinem Kehrwert.
Schritt 2
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.1.4
Faktorisiere aus heraus.
Schritt 2.1.5
Faktorisiere aus heraus.
Schritt 2.2
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 2.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3
Schritt 3.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4
Schritt 4.1
Kürze den gemeinsamen Faktor von .
Schritt 4.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.2
Forme den Ausdruck um.
Schritt 4.2
Kürze den gemeinsamen Teiler von und .
Schritt 4.2.1
Faktorisiere aus heraus.
Schritt 4.2.2
Faktorisiere aus heraus.
Schritt 4.2.3
Faktorisiere aus heraus.
Schritt 4.2.4
Kürze die gemeinsamen Faktoren.
Schritt 4.2.4.1
Faktorisiere aus heraus.
Schritt 4.2.4.2
Faktorisiere aus heraus.
Schritt 4.2.4.3
Faktorisiere aus heraus.
Schritt 4.2.4.4
Faktorisiere aus heraus.
Schritt 4.2.4.5
Faktorisiere aus heraus.
Schritt 4.2.4.6
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.7
Forme den Ausdruck um.
Schritt 5
Schritt 5.1
Schreibe als um.
Schritt 5.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 6
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.1.1
Faktorisiere aus heraus.
Schritt 6.1.2
Faktorisiere aus heraus.
Schritt 6.1.3
Faktorisiere aus heraus.
Schritt 6.1.4
Faktorisiere aus heraus.
Schritt 6.1.5
Faktorisiere aus heraus.
Schritt 6.2
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 6.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 6.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 7
Schritt 7.1
Kürze den gemeinsamen Faktor von .
Schritt 7.1.1
Faktorisiere aus heraus.
Schritt 7.1.2
Faktorisiere aus heraus.
Schritt 7.1.3
Kürze den gemeinsamen Faktor.
Schritt 7.1.4
Forme den Ausdruck um.
Schritt 7.2
Kürze den gemeinsamen Faktor von .
Schritt 7.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2
Forme den Ausdruck um.
Schritt 7.3
Kombiniere und .
Schritt 7.4
Kürze den gemeinsamen Faktor von .
Schritt 7.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.4.2
Dividiere durch .