Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Da sowohl Zahlen als auch Variablen enthält, sind zwei Schritte notwendig, um das kgV zu finden. Finde das kgV für den numerischen Teil und anschließend für den variablen Teil .
Schritt 1.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.4
hat Faktoren von und .
Schritt 1.5
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 1.6
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.7
Mutltipliziere mit .
Schritt 1.8
Die Teiler von sind , was -mal mit sich selbst multipliziert ist.
tritt -mal auf.
Schritt 1.9
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 1.10
Mutltipliziere mit .
Schritt 1.11
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.3
Forme den Ausdruck um.
Schritt 2.2.3
Kürze den gemeinsamen Faktor von .
Schritt 2.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2
Forme den Ausdruck um.
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.3.2
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.1
Faktorisiere aus heraus.
Schritt 2.3.2.2
Faktorisiere aus heraus.
Schritt 2.3.2.3
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.4
Forme den Ausdruck um.
Schritt 2.3.3
Kombiniere und .
Schritt 2.3.4
Kürze den gemeinsamen Faktor von .
Schritt 2.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.4.2
Forme den Ausdruck um.
Schritt 2.3.5
Wende das Distributivgesetz an.
Schritt 2.3.6
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von .
Schritt 3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2
Vereinfache die linke Seite.
Schritt 3.3.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.3.2.2
Dividiere durch .
Schritt 3.3.3
Vereinfache die rechte Seite.
Schritt 3.3.3.1
Dividiere durch .