Algebra Beispiele

Vereinfache (x^2-1)/(x+2)*(2x+4)/(2-2x^2)
Schritt 1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.2
Faktorisiere aus heraus.
Schritt 2.3
Faktorisiere aus heraus.
Schritt 3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Faktorisiere aus heraus.
Schritt 3.1.3
Faktorisiere aus heraus.
Schritt 3.2
Schreibe als um.
Schritt 3.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Kürze den gemeinsamen Faktor.
Schritt 4.3
Forme den Ausdruck um.
Schritt 5
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Wende das Distributivgesetz an.
Schritt 5.2
Wende das Distributivgesetz an.
Schritt 5.3
Wende das Distributivgesetz an.
Schritt 6
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Mutltipliziere mit .
Schritt 6.1.2
Bringe auf die linke Seite von .
Schritt 6.1.3
Schreibe als um.
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.1.5
Mutltipliziere mit .
Schritt 6.2
Addiere und .
Schritt 6.3
Addiere und .
Schritt 7
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.1.2
Forme den Ausdruck um.
Schritt 7.2
Mutltipliziere mit .
Schritt 8
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Schreibe als um.
Schritt 8.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 9
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Stelle die Terme um.
Schritt 9.1.2
Kürze den gemeinsamen Faktor.
Schritt 9.1.3
Forme den Ausdruck um.
Schritt 9.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Faktorisiere aus heraus.
Schritt 9.2.2
Schreibe als um.
Schritt 9.2.3
Faktorisiere aus heraus.
Schritt 9.2.4
Stelle die Terme um.
Schritt 9.2.5
Kürze den gemeinsamen Faktor.
Schritt 9.2.6
Dividiere durch .