Algebra Beispiele

Faktorisiere durch Gruppieren a^8-a^2b^6
Schritt 1
Klammere den ggT aus aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Klammere den ggT aus jedem Term des Polynoms aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Klammere den ggT aus dem Ausdruck aus.
Schritt 1.1.2
Klammere den ggT aus dem Ausdruck aus.
Schritt 1.2
Da alle Terme einen gemeinsamen Faktor besitzen, kann dieser aus jedem Term herausfaktorisiert werden.
Schritt 2
Schreibe als um.
Schritt 3
Schreibe als um.
Schritt 4
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 5.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.2
Mutltipliziere mit .
Schritt 5.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.2
Mutltipliziere mit .
Schritt 5.4
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.1
Forme den mittleren Term um.
Schritt 5.4.1.2
Ordne Terme um.
Schritt 5.4.1.3
Faktorisiere die ersten drei Terme mithilfe der binomischen Formeln.
Schritt 5.4.1.4
Schreibe als um.
Schritt 5.4.1.5
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 5.4.1.6
Entferne die Klammern.
Schritt 5.4.2
Entferne unnötige Klammern.