Algebra Beispiele

Vereinfache (6z^4+3z^2-9)(3z^2-6)^-1
Schritt 1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.2
Mutltipliziere mit .
Schritt 2.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Faktorisiere aus heraus.
Schritt 2.3.2
Faktorisiere aus heraus.
Schritt 2.3.3
Faktorisiere aus heraus.
Schritt 2.3.4
Faktorisiere aus heraus.
Schritt 2.3.5
Faktorisiere aus heraus.
Schritt 2.3.6
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.6.2
Forme den Ausdruck um.
Schritt 3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Es sei . Ersetze für alle .
Schritt 3.3
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Multipliziere mit .
Schritt 3.3.1.2
Schreibe um als plus
Schritt 3.3.1.3
Wende das Distributivgesetz an.
Schritt 3.3.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 3.3.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 3.3.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3.4
Ersetze alle durch .
Schritt 3.5
Schreibe als um.
Schritt 3.6
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .