Algebra Beispiele

Ermittele die Lücken im Graph f(x)=(2x^2+5x-3)/(x+3)
Schritt 1
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Schreibe um als plus
Schritt 1.1.3
Wende das Distributivgesetz an.
Schritt 1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2
Dividiere durch .
Schritt 3
Um die Lücken im Graph zu ermittenl, betrachte die Faktoren im Nenner, die gekürzt wurden.
Schritt 4
Um die Koordinaten der Lücken zu finden, setze jeden Faktor, der gekürzt wurde, gleich , löse und substituiere zurück in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze gleich .
Schritt 4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Setze für ein, um die -Koordinate der Lücke zu bestimmen.
Schritt 4.3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Mutltipliziere mit .
Schritt 4.3.2.2
Subtrahiere von .
Schritt 4.4
Die Lücken im Graph sind die Punkte, bei denen jeder der gekürzten Faktoren gleich ist.
Schritt 5