Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3
Schritt 3.1
Schreibe als um.
Schritt 3.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 4
Addiere zu beiden Seiten der Gleichung.
Schritt 5
Setze gleich .
Schritt 6
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 8
Fasse die Lösungen zusammen.
Schritt 9
Schritt 9.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 9.2
Löse nach auf.
Schritt 9.2.1
Setze gleich .
Schritt 9.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 10
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 11
Schritt 11.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.1.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 11.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.2.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 11.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.3.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 11.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.4.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 11.5
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Falsch
Wahr
Falsch
Falsch
Falsch
Wahr
Falsch
Schritt 12
Die Lösung besteht aus allen wahren Intervallen.
Schritt 13
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 14