Algebra Beispiele

Durch Faktorisierung lösen -3x^2-42x-51=-12x
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Addiere und .
Schritt 3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere aus heraus.
Schritt 3.2
Faktorisiere aus heraus.
Schritt 3.3
Faktorisiere aus heraus.
Schritt 3.4
Faktorisiere aus heraus.
Schritt 3.5
Faktorisiere aus heraus.
Schritt 4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Dividiere durch .
Schritt 5
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 6
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Potenziere mit .
Schritt 7.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.2.1
Mutltipliziere mit .
Schritt 7.1.2.2
Mutltipliziere mit .
Schritt 7.1.3
Subtrahiere von .
Schritt 7.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.4.1
Faktorisiere aus heraus.
Schritt 7.1.4.2
Schreibe als um.
Schritt 7.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 7.2
Mutltipliziere mit .
Schritt 7.3
Vereinfache .
Schritt 7.4
Bringe die negative Eins aus dem Nenner von .
Schritt 7.5
Schreibe als um.
Schritt 8
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1
Potenziere mit .
Schritt 8.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.2.1
Mutltipliziere mit .
Schritt 8.1.2.2
Mutltipliziere mit .
Schritt 8.1.3
Subtrahiere von .
Schritt 8.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.4.1
Faktorisiere aus heraus.
Schritt 8.1.4.2
Schreibe als um.
Schritt 8.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 8.2
Mutltipliziere mit .
Schritt 8.3
Vereinfache .
Schritt 8.4
Bringe die negative Eins aus dem Nenner von .
Schritt 8.5
Schreibe als um.
Schritt 8.6
Ändere das zu .
Schritt 8.7
Wende das Distributivgesetz an.
Schritt 8.8
Mutltipliziere mit .
Schritt 8.9
Mutltipliziere mit .
Schritt 9
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Potenziere mit .
Schritt 9.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.2.1
Mutltipliziere mit .
Schritt 9.1.2.2
Mutltipliziere mit .
Schritt 9.1.3
Subtrahiere von .
Schritt 9.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.4.1
Faktorisiere aus heraus.
Schritt 9.1.4.2
Schreibe als um.
Schritt 9.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 9.2
Mutltipliziere mit .
Schritt 9.3
Vereinfache .
Schritt 9.4
Bringe die negative Eins aus dem Nenner von .
Schritt 9.5
Schreibe als um.
Schritt 9.6
Ändere das zu .
Schritt 9.7
Wende das Distributivgesetz an.
Schritt 9.8
Mutltipliziere mit .
Schritt 9.9
Mutltipliziere mit .
Schritt 10
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 11
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: