Algebra Beispiele

d 구하기 a=pi(d^2)/4
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Kombiniere und .
Schritt 3
Multipliziere beide Seiten der Gleichung mit .
Schritt 4
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1.1
Kombinieren.
Schritt 4.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.1.2.2
Forme den Ausdruck um.
Schritt 4.1.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.1.3.2
Dividiere durch .
Schritt 4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kombiniere und .
Schritt 5
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe als um.
Schritt 6.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Schreibe als um.
Schritt 6.2.2
Ziehe Terme aus der Wurzel heraus.
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Mutltipliziere mit .
Schritt 6.4.2
Potenziere mit .
Schritt 6.4.3
Potenziere mit .
Schritt 6.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.4.5
Addiere und .
Schritt 6.4.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.6.1
Benutze , um als neu zu schreiben.
Schritt 6.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.4.6.3
Kombiniere und .
Schritt 6.4.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.6.4.2
Forme den Ausdruck um.
Schritt 6.4.6.5
Vereinfache.
Schritt 6.5
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 7
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 7.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 7.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.