Algebra Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel 2(x^2-1)+1=1
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.2
Mutltipliziere mit .
Schritt 1.2
Addiere und .
Schritt 2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Addiere und .
Schritt 3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Teile jeden Ausdruck in durch .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Dividiere durch .
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Dividiere durch .
Schritt 4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5
Jede Wurzel von ist .
Schritt 6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.