Algebra Beispiele

v 구하기 32 = cube root of (3v)/(4pi)
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 3
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze , um als neu zu schreiben.
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.1.2
Vereinfache.
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Potenziere mit .
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 4.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.1.1.2
Forme den Ausdruck um.
Schritt 4.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.2.1
Faktorisiere aus heraus.
Schritt 4.2.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.1.2.3
Forme den Ausdruck um.
Schritt 4.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Kombiniere und .
Schritt 4.2.2.1.2
Mutltipliziere mit .
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: