Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3
Kombiniere und .
Schritt 3.4
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.5
Vereinfache beide Seiten der Gleichung.
Schritt 3.5.1
Vereinfache die linke Seite.
Schritt 3.5.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.5.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.1.1.2
Forme den Ausdruck um.
Schritt 3.5.2
Vereinfache die rechte Seite.
Schritt 3.5.2.1
Vereinfache .
Schritt 3.5.2.1.1
Wende das Distributivgesetz an.
Schritt 3.5.2.1.2
Mutltipliziere mit .
Schritt 3.6
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.7
Faktorisiere aus heraus.
Schritt 3.7.1
Faktorisiere aus heraus.
Schritt 3.7.2
Faktorisiere aus heraus.
Schritt 3.7.3
Faktorisiere aus heraus.
Schritt 3.8
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.8.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.8.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.8.3
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.8.4
Addiere zu beiden Seiten der Gleichung.
Schritt 3.8.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Schritt 5.1
Der Definitionsbereich der Inversen (Umkehrfunktion) ist der Wertebereich der ursprünglichen Funktion und umgekehrt. Finde den Definitionsbereich und den Wertebereich von und und vergleiche sie.
Schritt 5.2
Finde den Wertebereich von .
Schritt 5.2.1
Der Wertebereich ist die Menge aller gültigen -Werte. Ermittle den Wertebereich mithilfe des Graphen.
Intervallschreibweise:
Schritt 5.3
Bestimme den Definitionsbereich von .
Schritt 5.3.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 5.3.2
Löse nach auf.
Schritt 5.3.2.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.3.2.1.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2.1.2
Vereinfache die linke Seite.
Schritt 5.3.2.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2.1.2
Dividiere durch .
Schritt 5.3.2.1.3
Vereinfache die rechte Seite.
Schritt 5.3.2.1.3.1
Dividiere durch .
Schritt 5.3.2.2
Addiere auf beiden Seiten der Ungleichung.
Schritt 5.3.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 5.4
Bestimme den Definitionsbereich von .
Schritt 5.4.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 5.5
Da der Definitionsbereich von der Wertebereich von ist und der Wertebereich von der Definitionsbereich von ist, ist die inverse Funktion von .
Schritt 6