Algebra Beispiele

Vereinfache ((6x^-2y^2)^-1)/((6^4x^4y^5)^-4)
Schritt 1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.2
Bringe in den Zähler mithilfe der Regel des negativen Exponenten .
Schritt 1.3
Bringe in den Zähler mithilfe der Regel des negativen Exponenten .
Schritt 2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wende die Produktregel auf an.
Schritt 2.2
Potenziere mit .
Schritt 2.3
Wende die Produktregel auf an.
Schritt 2.4
Potenziere mit .
Schritt 2.5
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.5.2
Mutltipliziere mit .
Schritt 2.6
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.6.2
Mutltipliziere mit .
Schritt 2.7
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Bewege .
Schritt 2.7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.7.3
Addiere und .
Schritt 3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Faktorisiere aus heraus.
Schritt 3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.3
Forme den Ausdruck um.
Schritt 3.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Multipliziere mit .
Schritt 3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.3
Forme den Ausdruck um.
Schritt 3.2.2.4
Dividiere durch .