Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Vertausche die Variablen.
Schritt 2
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Kombiniere und .
Schritt 2.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4
Multipliziere beide Seiten der Gleichung mit .
Schritt 2.5
Vereinfache beide Seiten der Gleichung.
Schritt 2.5.1
Vereinfache die linke Seite.
Schritt 2.5.1.1
Vereinfache .
Schritt 2.5.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.5.1.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.5.1.1.1.2
Faktorisiere aus heraus.
Schritt 2.5.1.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.5.1.1.1.4
Forme den Ausdruck um.
Schritt 2.5.1.1.2
Multipliziere.
Schritt 2.5.1.1.2.1
Mutltipliziere mit .
Schritt 2.5.1.1.2.2
Mutltipliziere mit .
Schritt 2.5.2
Vereinfache die rechte Seite.
Schritt 2.5.2.1
Vereinfache .
Schritt 2.5.2.1.1
Wende das Distributivgesetz an.
Schritt 2.5.2.1.2
Mutltipliziere mit .
Schritt 2.6
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.7
Faktorisiere aus heraus.
Schritt 2.7.1
Faktorisiere aus heraus.
Schritt 2.7.2
Faktorisiere aus heraus.
Schritt 2.7.3
Faktorisiere aus heraus.
Schritt 3
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 4
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Kombiniere und .
Schritt 4.2.4
Wende das Distributivgesetz an.
Schritt 4.2.5
Vereinfache den Ausdruck.
Schritt 4.2.5.1
Mutltipliziere mit .
Schritt 4.2.5.2
Addiere und .
Schritt 4.2.5.3
Addiere und .
Schritt 4.2.6
Kombiniere und .
Schritt 4.2.7
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 4.2.7.1
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 4.2.7.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.7.1.2
Forme den Ausdruck um.
Schritt 4.2.7.2
Dividiere durch .
Schritt 4.2.8
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 4.3
Berechne .
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Vereinfache jeden Term.
Schritt 4.3.3.1
Schreibe als um.
Schritt 4.3.3.1.1
Benutze , um als neu zu schreiben.
Schritt 4.3.3.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.3.1.3
Kombiniere und .
Schritt 4.3.3.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.3.3.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.1.4.2
Forme den Ausdruck um.
Schritt 4.3.3.1.5
Vereinfache.
Schritt 4.3.3.2
Kürze den gemeinsamen Faktor von .
Schritt 4.3.3.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.2.3
Forme den Ausdruck um.
Schritt 4.3.3.3
Wende das Distributivgesetz an.
Schritt 4.3.3.4
Multipliziere .
Schritt 4.3.3.4.1
Mutltipliziere mit .
Schritt 4.3.3.4.2
Mutltipliziere mit .
Schritt 4.3.3.5
Mutltipliziere mit .
Schritt 4.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 4.3.4.1
Addiere und .
Schritt 4.3.4.2
Addiere und .
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .