Algebra Beispiele

Solve the System of Equations 3(2x-y)=24 -6x+8y=-14
Schritt 1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.1.2
Dividiere durch .
Schritt 1.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.1.1
Faktorisiere aus heraus.
Schritt 1.2.3.1.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.1.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.1.1.2.3
Forme den Ausdruck um.
Schritt 1.2.3.1.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.1.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.2.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.1.2.2.3
Forme den Ausdruck um.
Schritt 2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.2.1
Kombiniere und .
Schritt 2.2.1.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.1.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.3.1
Kombiniere und .
Schritt 2.2.1.1.3.2
Mutltipliziere mit .
Schritt 2.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.3
Kombiniere und .
Schritt 2.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.6
Mutltipliziere mit .
Schritt 2.2.1.7
Subtrahiere von .
Schritt 2.2.1.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.8.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.8.2
Forme den Ausdruck um.
Schritt 3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von .
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Dividiere durch .
Schritt 4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.2.1
Mutltipliziere mit .
Schritt 4.2.1.2.2
Addiere und .
Schritt 4.2.1.2.3
Dividiere durch .
Schritt 5
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 7