Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.4
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.6
Der Teiler von ist selbst.
occurs time.
Schritt 2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.8
Das kleinste gemeinsame Vielfache einer Reihe von Zahlen ist die kleinste Zahl, von der die Zahlen Teiler sind.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.2
Faktorisiere aus heraus.
Schritt 3.2.1.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.4
Forme den Ausdruck um.
Schritt 3.2.2
Mutltipliziere mit .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Vereinfache jeden Term.
Schritt 3.3.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3.1.2
Kombiniere und .
Schritt 3.3.1.3
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.3.2
Forme den Ausdruck um.
Schritt 3.3.1.4
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.4.3
Forme den Ausdruck um.
Schritt 3.3.1.5
Wende das Distributivgesetz an.
Schritt 3.3.1.6
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.3.1.6.1
Bewege .
Schritt 3.3.1.6.2
Mutltipliziere mit .
Schritt 3.3.1.7
Mutltipliziere mit .
Schritt 3.3.2
Subtrahiere von .
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.3
Faktorisiere die linke Seite der Gleichung.
Schritt 4.3.1
Faktorisiere aus heraus.
Schritt 4.3.1.1
Faktorisiere aus heraus.
Schritt 4.3.1.2
Faktorisiere aus heraus.
Schritt 4.3.1.3
Schreibe als um.
Schritt 4.3.1.4
Faktorisiere aus heraus.
Schritt 4.3.1.5
Faktorisiere aus heraus.
Schritt 4.3.2
Faktorisiere.
Schritt 4.3.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 4.3.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 4.3.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4.3.2.2
Entferne unnötige Klammern.
Schritt 4.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.5
Setze gleich und löse nach auf.
Schritt 4.5.1
Setze gleich .
Schritt 4.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.6
Setze gleich und löse nach auf.
Schritt 4.6.1
Setze gleich .
Schritt 4.6.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.7
Die endgültige Lösung sind alle Werte, die wahr machen.