Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 2
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Dividiere durch .
Schritt 2.3
Vereinfache die linke Seite.
Schritt 2.3.1
Multipliziere die Exponenten in .
Schritt 2.3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.1.2
Mutltipliziere mit .
Schritt 2.4
Vereinfache die rechte Seite.
Schritt 2.4.1
Vereinfache .
Schritt 2.4.1.1
Wende die Produktregel auf an.
Schritt 2.4.1.2
Potenziere mit .
Schritt 2.4.1.3
Mutltipliziere mit .
Schritt 2.4.1.4
Multipliziere die Exponenten in .
Schritt 2.4.1.4.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.1.4.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Da die Exponenten gleich sind, müssen die Basen der Exponenten auf beiden Seiten der Gleichung gleich sein.
Schritt 3.2
Löse nach auf.
Schritt 3.2.1
Schreibe die Betragsgleichung als vier Gleichungen ohne Absolutwerte.
Schritt 3.2.2
Nach dem Vereinfachen gibt es nur zwei eindeutige Gleichungen, die gelöst werden müssen.
Schritt 3.2.3
Löse nach auf.
Schritt 3.2.3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 3.2.3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.3.1.2
Subtrahiere von .
Schritt 3.2.3.2
Da , ist die Gleichung immer erfüllt.
Alle reellen Zahlen
Alle reellen Zahlen
Schritt 3.2.4
Löse nach auf.
Schritt 3.2.4.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 3.2.4.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2.4.1.2
Addiere und .
Schritt 3.2.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.4.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.4.2.2
Vereinfache die linke Seite.
Schritt 3.2.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.4.2.2.1.2
Dividiere durch .
Schritt 3.2.4.2.3
Vereinfache die rechte Seite.
Schritt 3.2.4.2.3.1
Dividiere durch .
Schritt 3.2.5
Liste alle Lösungen auf.