Beispiele

Finde die Wurzeln mithilfe des Lemmas von Gauß
Schritt 1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 3
Setze die möglichen Wurzeln eine nach der anderen in das Polynom ein, um die tatsächlichen Wurzeln zu ermitteln. Vereinfache, um zu prüfen, ob der Wert gleich ist, was bedeutet, dass er eine Wurzel ist.
Schritt 4
Vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Subtrahiere von .
Schritt 4.2.2
Addiere und .
Schritt 5
Da eine bekannte Wurzel ist, teile das Polynom durch , um das Quotientenpolynom zu ermitteln. Dieses Polynom kann dann benutzt werden, um die verbleibenden Wurzeln zu finden.
Schritt 6
Als Nächstes bestimme die Wurzeln des verbleibenden Polynoms. Der Grad des Polynoms ist um reduziert worden.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ordne die Zahlen, die den Divisor und den Dividenden darstellen, ähnlich wie in einer Division an.
  
Schritt 6.2
Die erste Zahl im Dividenden wird an die erste Position des Ergebnisbereichs gestellt (unterhalb der horizontalen Linie).
  
Schritt 6.3
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 6.4
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 6.5
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
 
Schritt 6.6
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
 
Schritt 6.7
Alle Zahlen außer der letzten werden Koeffizienten des Quotients der Polynome. Der letzte Wert in der Ergebniszeile ist der Rest.
Schritt 6.8
Vereinfache das Quotientenpolynom.
Schritt 7
Addiere zu beiden Seiten der Gleichung.
Schritt 8
Das Polynom kann als ein Satz Linearfaktoren geschrieben werden.
Schritt 9
Das sind die Wurzeln des Polynoms .
Schritt 10
Gib DEINE Aufgabe ein
Mathway benötigt Javascript und einen modernen Browser.