Beispiele
Schritt 1
Setze gleich .
Schritt 2
Schritt 2.1
Faktorisiere die linke Seite der Gleichung.
Schritt 2.1.1
Gruppiere die Terme um.
Schritt 2.1.2
Schreibe als um.
Schritt 2.1.3
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Summe kubischer Terme, , wobei und .
Schritt 2.1.4
Vereinfache.
Schritt 2.1.4.1
Mutltipliziere mit .
Schritt 2.1.4.2
Potenziere mit .
Schritt 2.1.5
Faktorisiere aus heraus.
Schritt 2.1.5.1
Faktorisiere aus heraus.
Schritt 2.1.5.2
Faktorisiere aus heraus.
Schritt 2.1.5.3
Faktorisiere aus heraus.
Schritt 2.1.6
Faktorisiere aus heraus.
Schritt 2.1.6.1
Faktorisiere aus heraus.
Schritt 2.1.6.2
Faktorisiere aus heraus.
Schritt 2.1.7
Addiere und .
Schritt 2.1.8
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 2.1.8.1
Schreibe als um.
Schritt 2.1.8.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.1.8.3
Schreibe das Polynom neu.
Schritt 2.1.8.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich und löse nach auf.
Schritt 2.3.1
Setze gleich .
Schritt 2.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4
Die endgültige Lösung sind alle Werte, die wahr machen. Die Multiplizität einer Wurzel gibt an, wie oft die Wurzel auftritt.
(Vielfachheit von )
(Vielfachheit von )
Schritt 3