Elementarmathematik Beispiele

53y+52=553y+52=5
Schritt 1
Bringe alle Terme, die nicht yy enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere 5252 von beiden Seiten der Gleichung.
53y=5-5253y=552
Schritt 1.2
Um 55 als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit 2222.
53y=522-5253y=52252
Schritt 1.3
Kombiniere 55 und 2222.
53y=522-5253y=52252
Schritt 1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
53y=52-5253y=5252
Schritt 1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Mutltipliziere 55 mit 22.
53y=10-5253y=1052
Schritt 1.5.2
Subtrahiere 55 von 1010.
53y=5253y=52
53y=5253y=52
53y=5253y=52
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
3y,23y,2
Schritt 2.2
Da 3y,23y,2 sowohl Zahlen als auch Variablen enthält, sind zwei Schritte notwendig, um das kgV zu finden. Finde das kgV für den numerischen Teil 3,23,2 und anschließend für den variablen Teil y1y1.
Schritt 2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.4
Da 33 keine Teiler außer 11 und 33 hat.
33 ist eine Primzahl
Schritt 2.5
Da 22 keine Teiler außer 11 und 22 hat.
22 ist eine Primzahl
Schritt 2.6
Das kgV von 3,23,2 ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
2323
Schritt 2.7
Mutltipliziere 22 mit 33.
66
Schritt 2.8
Der Teiler von y1y1 ist yy selbst.
y1=yy1=y
yy occurs 11 time.
Schritt 2.9
Das kgV von y1y1 ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
yy
Schritt 2.10
Das kgV von 3y,23y,2 ist der numerische Teil 66 multipliziert mit dem variablen Teil.
6y6y
6y6y
Schritt 3
Multipliziere jeden Term in 53y=5253y=52 mit 6y6y um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in 53y=5253y=52 mit 6y6y.
53y(6y)=52(6y)53y(6y)=52(6y)
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
653yy=52(6y)653yy=52(6y)
Schritt 3.2.2
Kürze den gemeinsamen Faktor von 33.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Faktorisiere 33 aus 66 heraus.
3(2)53yy=52(6y)3(2)53yy=52(6y)
Schritt 3.2.2.2
Faktorisiere 33 aus 3y3y heraus.
3(2)53(y)y=52(6y)3(2)53(y)y=52(6y)
Schritt 3.2.2.3
Kürze den gemeinsamen Faktor.
3253yy=52(6y)
Schritt 3.2.2.4
Forme den Ausdruck um.
25yy=52(6y)
25yy=52(6y)
Schritt 3.2.3
Kombiniere 2 und 5y.
25yy=52(6y)
Schritt 3.2.4
Mutltipliziere 2 mit 5.
10yy=52(6y)
Schritt 3.2.5
Kürze den gemeinsamen Faktor von y.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.5.1
Kürze den gemeinsamen Faktor.
10yy=52(6y)
Schritt 3.2.5.2
Forme den Ausdruck um.
10=52(6y)
10=52(6y)
10=52(6y)
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Kürze den gemeinsamen Faktor von 2.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Faktorisiere 2 aus 6y heraus.
10=52(2(3y))
Schritt 3.3.1.2
Kürze den gemeinsamen Faktor.
10=52(2(3y))
Schritt 3.3.1.3
Forme den Ausdruck um.
10=5(3y)
10=5(3y)
Schritt 3.3.2
Mutltipliziere 3 mit 5.
10=15y
10=15y
10=15y
Schritt 4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als 15y=10 um.
15y=10
Schritt 4.2
Teile jeden Ausdruck in 15y=10 durch 15 und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Teile jeden Ausdruck in 15y=10 durch 15.
15y15=1015
Schritt 4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor von 15.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Kürze den gemeinsamen Faktor.
15y15=1015
Schritt 4.2.2.1.2
Dividiere y durch 1.
y=1015
y=1015
y=1015
Schritt 4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Kürze den gemeinsamen Teiler von 10 und 15.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1.1
Faktorisiere 5 aus 10 heraus.
y=5(2)15
Schritt 4.2.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1.2.1
Faktorisiere 5 aus 15 heraus.
y=5253
Schritt 4.2.3.1.2.2
Kürze den gemeinsamen Faktor.
y=5253
Schritt 4.2.3.1.2.3
Forme den Ausdruck um.
y=23
y=23
y=23
y=23
y=23
y=23
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
y=23
Dezimalform:
y=0.6
Gib DEINE Aufgabe ein
using Amazon.Auth.AccessControlPolicy;
Mathway benötigt Javascript und einen modernen Browser.
 [x2  12  π  xdx ] 
AmazonPay