Beispiele
,
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Dividiere durch .
Schritt 3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2.2
Subtrahiere von .
Schritt 5.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.3.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2
Vereinfache die linke Seite.
Schritt 5.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2
Dividiere durch .
Schritt 5.3.3
Vereinfache die rechte Seite.
Schritt 5.3.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.4
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.5
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 5.5.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.5.2
Subtrahiere von .
Schritt 5.6
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.6.1
Teile jeden Ausdruck in durch .
Schritt 5.6.2
Vereinfache die linke Seite.
Schritt 5.6.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.6.2.1.2
Dividiere durch .
Schritt 5.6.3
Vereinfache die rechte Seite.
Schritt 5.6.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.7
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Schritt 6.1
Das Intervall enthält nicht . Es ist nicht in der endgültigen Lösung enthalten.
liegt nicht im Intervall
Schritt 6.2
Das Intervall enthält .