Lineare Algebra Beispiele

Löse mit einer Matrix durch Eliminierung
-3x+y-z=-23x+yz=2 , -3x+z=43x+z=4 , y-5z=0y5z=0
Schritt 1
Write the system as a matrix.
[-31-1-2-301401-50]⎢ ⎢311230140150⎥ ⎥
Schritt 2
Ermittele die normierte Zeilenstufenform.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Multiply each element of R1R1 by -1313 to make the entry at 1,11,1 a 11.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Multiply each element of R1R1 by -1313 to make the entry at 1,11,1 a 11.
[-13-3-131-13-1-13-2-301401-50]⎢ ⎢13313113113230140150⎥ ⎥
Schritt 2.1.2
Vereinfache R1R1.
[1-131323-301401-50]⎢ ⎢113132330140150⎥ ⎥
[1-131323-301401-50]⎢ ⎢113132330140150⎥ ⎥
Schritt 2.2
Perform the row operation R2=R2+3R1R2=R2+3R1 to make the entry at 2,12,1 a 00.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Perform the row operation R2=R2+3R1R2=R2+3R1 to make the entry at 2,12,1 a 00.
[1-131323-3+310+3(-13)1+3(13)4+3(23)01-50]⎢ ⎢ ⎢ ⎢11313233+310+3(13)1+3(13)4+3(23)0150⎥ ⎥ ⎥ ⎥
Schritt 2.2.2
Vereinfache R2R2.
[1-1313230-12601-50]⎢ ⎢113132301260150⎥ ⎥
[1-1313230-12601-50]⎢ ⎢113132301260150⎥ ⎥
Schritt 2.3
Multiply each element of R2R2 by -11 to make the entry at 2,22,2 a 11.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Multiply each element of R2R2 by -11 to make the entry at 2,22,2 a 11.
[1-131323-0--1-12-1601-50]⎢ ⎢11313230112160150⎥ ⎥
Schritt 2.3.2
Vereinfache R2R2.
[1-13132301-2-601-50]⎢ ⎢113132301260150⎥ ⎥
[1-13132301-2-601-50]⎢ ⎢113132301260150⎥ ⎥
Schritt 2.4
Perform the row operation R3=R3-R2R3=R3R2 to make the entry at 3,23,2 a 00.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Perform the row operation R3=R3-R2R3=R3R2 to make the entry at 3,23,2 a 00.
[1-13132301-2-60-01-1-5+20+6]⎢ ⎢1131323012600115+20+6⎥ ⎥
Schritt 2.4.2
Vereinfache R3R3.
[1-13132301-2-600-36]⎢ ⎢113132301260036⎥ ⎥
[1-13132301-2-600-36]⎢ ⎢113132301260036⎥ ⎥
Schritt 2.5
Multiply each element of R3R3 by -1313 to make the entry at 3,33,3 a 11.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Multiply each element of R3R3 by -1313 to make the entry at 3,33,3 a 11.
[1-13132301-2-6-130-130-13-3-136]⎢ ⎢ ⎢11313230126130130133136⎥ ⎥ ⎥
Schritt 2.5.2
Vereinfache R3R3.
[1-13132301-2-6001-2]⎢ ⎢113132301260012⎥ ⎥
[1-13132301-2-6001-2]⎢ ⎢113132301260012⎥ ⎥
Schritt 2.6
Perform the row operation R2=R2+2R3R2=R2+2R3 to make the entry at 2,32,3 a 00.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Perform the row operation R2=R2+2R3R2=R2+2R3 to make the entry at 2,32,3 a 00.
[1-1313230+201+20-2+21-6+2-2001-2]⎢ ⎢11313230+201+202+216+220012⎥ ⎥
Schritt 2.6.2
Vereinfache R2R2.
[1-131323010-10001-2]⎢ ⎢1131323010100012⎥ ⎥
[1-131323010-10001-2]⎢ ⎢1131323010100012⎥ ⎥
Schritt 2.7
Perform the row operation R1=R1-13R3R1=R113R3 to make the entry at 1,31,3 a 00.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Perform the row operation R1=R1-13R3R1=R113R3 to make the entry at 1,31,3 a 00.
[1-130-13-13013-13123-13-2010-10001-2]⎢ ⎢1130131301313123132010100012⎥ ⎥
Schritt 2.7.2
Vereinfache R1R1.
[1-13043010-10001-2]⎢ ⎢113043010100012⎥ ⎥
[1-13043010-10001-2]⎢ ⎢113043010100012⎥ ⎥
Schritt 2.8
Perform the row operation R1=R1+13R2R1=R1+13R2 to make the entry at 1,21,2 a 00.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.1
Perform the row operation R1=R1+13R2R1=R1+13R2 to make the entry at 1,21,2 a 00.
[1+130-13+1310+13043+13-10010-10001-2]⎢ ⎢1+13013+1310+13043+1310010100012⎥ ⎥
Schritt 2.8.2
Vereinfache R1R1.
[100-2010-10001-2]⎢ ⎢1002010100012⎥ ⎥
[100-2010-10001-2]⎢ ⎢1002010100012⎥ ⎥
[100-2010-10001-2]⎢ ⎢1002010100012⎥ ⎥
Schritt 3
Use the result matrix to declare the final solution to the system of equations.
x=-2x=2
y=-10y=10
z=-2z=2
Schritt 4
The solution is the set of ordered pairs that make the system true.
(-2,-10,-2)(2,10,2)
Gib DEINE Aufgabe ein
using Amazon.Auth.AccessControlPolicy;
Mathway benötigt Javascript und einen modernen Browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay