Lineare Algebra Beispiele
-3x+y-z=-2−3x+y−z=−2 , -3x+z=4−3x+z=4 , y-5z=0y−5z=0
Schritt 1
Write the system as a matrix.
[-31-1-2-301401-50]⎡⎢
⎢⎣−31−1−2−301401−50⎤⎥
⎥⎦
Schritt 2
Schritt 2.1
Multiply each element of R1R1 by -13−13 to make the entry at 1,11,1 a 11.
Schritt 2.1.1
Multiply each element of R1R1 by -13−13 to make the entry at 1,11,1 a 11.
[-13⋅-3-13⋅1-13⋅-1-13⋅-2-301401-50]⎡⎢
⎢⎣−13⋅−3−13⋅1−13⋅−1−13⋅−2−301401−50⎤⎥
⎥⎦
Schritt 2.1.2
Vereinfache R1R1.
[1-131323-301401-50]⎡⎢
⎢⎣1−131323−301401−50⎤⎥
⎥⎦
[1-131323-301401-50]⎡⎢
⎢⎣1−131323−301401−50⎤⎥
⎥⎦
Schritt 2.2
Perform the row operation R2=R2+3R1R2=R2+3R1 to make the entry at 2,12,1 a 00.
Schritt 2.2.1
Perform the row operation R2=R2+3R1R2=R2+3R1 to make the entry at 2,12,1 a 00.
[1-131323-3+3⋅10+3(-13)1+3(13)4+3(23)01-50]⎡⎢
⎢
⎢
⎢⎣1−131323−3+3⋅10+3(−13)1+3(13)4+3(23)01−50⎤⎥
⎥
⎥
⎥⎦
Schritt 2.2.2
Vereinfache R2R2.
[1-1313230-12601-50]⎡⎢
⎢⎣1−1313230−12601−50⎤⎥
⎥⎦
[1-1313230-12601-50]⎡⎢
⎢⎣1−1313230−12601−50⎤⎥
⎥⎦
Schritt 2.3
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
Schritt 2.3.1
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
[1-131323-0--1-1⋅2-1⋅601-50]⎡⎢
⎢⎣1−131323−0−−1−1⋅2−1⋅601−50⎤⎥
⎥⎦
Schritt 2.3.2
Vereinfache R2R2.
[1-13132301-2-601-50]⎡⎢
⎢⎣1−13132301−2−601−50⎤⎥
⎥⎦
[1-13132301-2-601-50]⎡⎢
⎢⎣1−13132301−2−601−50⎤⎥
⎥⎦
Schritt 2.4
Perform the row operation R3=R3-R2R3=R3−R2 to make the entry at 3,23,2 a 00.
Schritt 2.4.1
Perform the row operation R3=R3-R2R3=R3−R2 to make the entry at 3,23,2 a 00.
[1-13132301-2-60-01-1-5+20+6]⎡⎢
⎢⎣1−13132301−2−60−01−1−5+20+6⎤⎥
⎥⎦
Schritt 2.4.2
Vereinfache R3R3.
[1-13132301-2-600-36]⎡⎢
⎢⎣1−13132301−2−600−36⎤⎥
⎥⎦
[1-13132301-2-600-36]⎡⎢
⎢⎣1−13132301−2−600−36⎤⎥
⎥⎦
Schritt 2.5
Multiply each element of R3R3 by -13−13 to make the entry at 3,33,3 a 11.
Schritt 2.5.1
Multiply each element of R3R3 by -13−13 to make the entry at 3,33,3 a 11.
[1-13132301-2-6-13⋅0-13⋅0-13⋅-3-13⋅6]⎡⎢
⎢
⎢⎣1−13132301−2−6−13⋅0−13⋅0−13⋅−3−13⋅6⎤⎥
⎥
⎥⎦
Schritt 2.5.2
Vereinfache R3R3.
[1-13132301-2-6001-2]⎡⎢
⎢⎣1−13132301−2−6001−2⎤⎥
⎥⎦
[1-13132301-2-6001-2]⎡⎢
⎢⎣1−13132301−2−6001−2⎤⎥
⎥⎦
Schritt 2.6
Perform the row operation R2=R2+2R3R2=R2+2R3 to make the entry at 2,32,3 a 00.
Schritt 2.6.1
Perform the row operation R2=R2+2R3R2=R2+2R3 to make the entry at 2,32,3 a 00.
[1-1313230+2⋅01+2⋅0-2+2⋅1-6+2⋅-2001-2]⎡⎢
⎢⎣1−1313230+2⋅01+2⋅0−2+2⋅1−6+2⋅−2001−2⎤⎥
⎥⎦
Schritt 2.6.2
Vereinfache R2R2.
[1-131323010-10001-2]⎡⎢
⎢⎣1−131323010−10001−2⎤⎥
⎥⎦
[1-131323010-10001-2]⎡⎢
⎢⎣1−131323010−10001−2⎤⎥
⎥⎦
Schritt 2.7
Perform the row operation R1=R1-13R3R1=R1−13R3 to make the entry at 1,31,3 a 00.
Schritt 2.7.1
Perform the row operation R1=R1-13R3R1=R1−13R3 to make the entry at 1,31,3 a 00.
[1-13⋅0-13-13⋅013-13⋅123-13⋅-2010-10001-2]⎡⎢
⎢⎣1−13⋅0−13−13⋅013−13⋅123−13⋅−2010−10001−2⎤⎥
⎥⎦
Schritt 2.7.2
Vereinfache R1R1.
[1-13043010-10001-2]⎡⎢
⎢⎣1−13043010−10001−2⎤⎥
⎥⎦
[1-13043010-10001-2]⎡⎢
⎢⎣1−13043010−10001−2⎤⎥
⎥⎦
Schritt 2.8
Perform the row operation R1=R1+13R2R1=R1+13R2 to make the entry at 1,21,2 a 00.
Schritt 2.8.1
Perform the row operation R1=R1+13R2R1=R1+13R2 to make the entry at 1,21,2 a 00.
[1+13⋅0-13+13⋅10+13⋅043+13⋅-10010-10001-2]⎡⎢
⎢⎣1+13⋅0−13+13⋅10+13⋅043+13⋅−10010−10001−2⎤⎥
⎥⎦
Schritt 2.8.2
Vereinfache R1R1.
[100-2010-10001-2]⎡⎢
⎢⎣100−2010−10001−2⎤⎥
⎥⎦
[100-2010-10001-2]⎡⎢
⎢⎣100−2010−10001−2⎤⎥
⎥⎦
[100-2010-10001-2]⎡⎢
⎢⎣100−2010−10001−2⎤⎥
⎥⎦
Schritt 3
Use the result matrix to declare the final solution to the system of equations.
x=-2x=−2
y=-10y=−10
z=-2z=−2
Schritt 4
The solution is the set of ordered pairs that make the system true.
(-2,-10,-2)(−2,−10,−2)