Lineare Algebra Beispiele
Schritt 1
Der Kern einer Transformation ist ein Vektor, der die Transformation gleich dem Nullvektor (dem Urbild der Transformation) macht.
Schritt 2
Erzeuge aus der Vektorgleichung ein Gleichungssystem.
Schritt 3
Write the system as a matrix.
Schritt 4
Schritt 4.1
Perform the row operation to make the entry at a .
Schritt 4.1.1
Perform the row operation to make the entry at a .
Schritt 4.1.2
Vereinfache .
Schritt 4.2
Perform the row operation to make the entry at a .
Schritt 4.2.1
Perform the row operation to make the entry at a .
Schritt 4.2.2
Vereinfache .
Schritt 4.3
Multiply each element of by to make the entry at a .
Schritt 4.3.1
Multiply each element of by to make the entry at a .
Schritt 4.3.2
Vereinfache .
Schritt 4.4
Perform the row operation to make the entry at a .
Schritt 4.4.1
Perform the row operation to make the entry at a .
Schritt 4.4.2
Vereinfache .
Schritt 4.5
Multiply each element of by to make the entry at a .
Schritt 4.5.1
Multiply each element of by to make the entry at a .
Schritt 4.5.2
Vereinfache .
Schritt 4.6
Perform the row operation to make the entry at a .
Schritt 4.6.1
Perform the row operation to make the entry at a .
Schritt 4.6.2
Vereinfache .
Schritt 4.7
Perform the row operation to make the entry at a .
Schritt 4.7.1
Perform the row operation to make the entry at a .
Schritt 4.7.2
Vereinfache .
Schritt 4.8
Perform the row operation to make the entry at a .
Schritt 4.8.1
Perform the row operation to make the entry at a .
Schritt 4.8.2
Vereinfache .
Schritt 5
Use the result matrix to declare the final solution to the system of equations.
Schritt 6
Write a solution vector by solving in terms of the free variables in each row.
Schritt 7
Write as a solution set.
Schritt 8
Der Nullraum von ist der Teilraum .