Finite Mathematik Beispiele
[011142334]
Schritt 1
Schritt 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Schritt 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Schritt 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Schritt 1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|4234|
Schritt 1.1.4
Multiply element a11 by its cofactor.
0|4234|
Schritt 1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1234|
Schritt 1.1.6
Multiply element a12 by its cofactor.
-1|1234|
Schritt 1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1433|
Schritt 1.1.8
Multiply element a13 by its cofactor.
1|1433|
Schritt 1.1.9
Add the terms together.
0|4234|-1|1234|+1|1433|
0|4234|-1|1234|+1|1433|
Schritt 1.2
Mutltipliziere 0 mit |4234|.
0-1|1234|+1|1433|
Schritt 1.3
Berechne |1234|.
Schritt 1.3.1
Die Determinante einer 2×2-Matrix kann mithilfe der Formel |abcd|=ad-cb bestimmt werden.
0-1(1⋅4-3⋅2)+1|1433|
Schritt 1.3.2
Vereinfache die Determinante.
Schritt 1.3.2.1
Vereinfache jeden Term.
Schritt 1.3.2.1.1
Mutltipliziere 4 mit 1.
0-1(4-3⋅2)+1|1433|
Schritt 1.3.2.1.2
Mutltipliziere -3 mit 2.
0-1(4-6)+1|1433|
0-1(4-6)+1|1433|
Schritt 1.3.2.2
Subtrahiere 6 von 4.
0-1⋅-2+1|1433|
0-1⋅-2+1|1433|
0-1⋅-2+1|1433|
Schritt 1.4
Berechne |1433|.
Schritt 1.4.1
Die Determinante einer 2×2-Matrix kann mithilfe der Formel |abcd|=ad-cb bestimmt werden.
0-1⋅-2+1(1⋅3-3⋅4)
Schritt 1.4.2
Vereinfache die Determinante.
Schritt 1.4.2.1
Vereinfache jeden Term.
Schritt 1.4.2.1.1
Mutltipliziere 3 mit 1.
0-1⋅-2+1(3-3⋅4)
Schritt 1.4.2.1.2
Mutltipliziere -3 mit 4.
0-1⋅-2+1(3-12)
0-1⋅-2+1(3-12)
Schritt 1.4.2.2
Subtrahiere 12 von 3.
0-1⋅-2+1⋅-9
0-1⋅-2+1⋅-9
0-1⋅-2+1⋅-9
Schritt 1.5
Vereinfache die Determinante.
Schritt 1.5.1
Vereinfache jeden Term.
Schritt 1.5.1.1
Mutltipliziere -1 mit -2.
0+2+1⋅-9
Schritt 1.5.1.2
Mutltipliziere -9 mit 1.
0+2-9
0+2-9
Schritt 1.5.2
Addiere 0 und 2.
2-9
Schritt 1.5.3
Subtrahiere 9 von 2.
-7
-7
-7
Schritt 2
Since the determinant is non-zero, the inverse exists.
Schritt 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[011100142010334001]
Schritt 4
Schritt 4.1
Swap R2 with R1 to put a nonzero entry at 1,1.
[142010011100334001]
Schritt 4.2
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
Schritt 4.2.1
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
[1420100111003-3⋅13-3⋅44-3⋅20-3⋅00-3⋅11-3⋅0]
Schritt 4.2.2
Vereinfache R3.
[1420100111000-9-20-31]
[1420100111000-9-20-31]
Schritt 4.3
Perform the row operation R3=R3+9R2 to make the entry at 3,2 a 0.
Schritt 4.3.1
Perform the row operation R3=R3+9R2 to make the entry at 3,2 a 0.
[1420100111000+9⋅0-9+9⋅1-2+9⋅10+9⋅1-3+9⋅01+9⋅0]
Schritt 4.3.2
Vereinfache R3.
[1420100111000079-31]
[1420100111000079-31]
Schritt 4.4
Multiply each element of R3 by 17 to make the entry at 3,3 a 1.
Schritt 4.4.1
Multiply each element of R3 by 17 to make the entry at 3,3 a 1.
[14201001110007077797-3717]
Schritt 4.4.2
Vereinfache R3.
[14201001110000197-3717]
[14201001110000197-3717]
Schritt 4.5
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Schritt 4.5.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[1420100-01-01-11-970+370-1700197-3717]
Schritt 4.5.2
Vereinfache R2.
[142010010-2737-1700197-3717]
[142010010-2737-1700197-3717]
Schritt 4.6
Perform the row operation R1=R1-2R3 to make the entry at 1,3 a 0.
Schritt 4.6.1
Perform the row operation R1=R1-2R3 to make the entry at 1,3 a 0.
[1-2⋅04-2⋅02-2⋅10-2(97)1-2(-37)0-2(17)010-2737-1700197-3717]
Schritt 4.6.2
Vereinfache R1.
[140-187137-27010-2737-1700197-3717]
[140-187137-27010-2737-1700197-3717]
Schritt 4.7
Perform the row operation R1=R1-4R2 to make the entry at 1,2 a 0.
Schritt 4.7.1
Perform the row operation R1=R1-4R2 to make the entry at 1,2 a 0.
[1-4⋅04-4⋅10-4⋅0-187-4(-27)137-4(37)-27-4(-17)010-2737-1700197-3717]
Schritt 4.7.2
Vereinfache R1.
[100-1071727010-2737-1700197-3717]
[100-1071727010-2737-1700197-3717]
[100-1071727010-2737-1700197-3717]
Schritt 5
The right half of the reduced row echelon form is the inverse.
[-1071727-2737-1797-3717]