Analysis Beispiele
Schritt 1
Schritt 1.1
Stelle das Integral auf.
Schritt 1.2
Integriere .
Schritt 1.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 1.2.2
Das Integral von nach ist .
Schritt 1.2.3
Vereinfache.
Schritt 1.3
Entferne die Konstante der Integration.
Schritt 1.4
Verwende die Potenzregel des Logarithmus.
Schritt 1.5
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 1.6
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2
Schritt 2.1
Multipliziere jeden Ausdruck mit .
Schritt 2.2
Vereinfache jeden Term.
Schritt 2.2.1
Kombiniere und .
Schritt 2.2.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Multipliziere .
Schritt 2.2.4.1
Mutltipliziere mit .
Schritt 2.2.4.2
Potenziere mit .
Schritt 2.2.4.3
Potenziere mit .
Schritt 2.2.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.4.5
Addiere und .
Schritt 2.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.4
Kombiniere und .
Schritt 2.5
Kürze den gemeinsamen Faktor von .
Schritt 2.5.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2
Forme den Ausdruck um.
Schritt 3
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 4
Integriere auf beiden Seiten.
Schritt 5
Integriere die linke Seite.
Schritt 6
Wende die Konstantenregel an.
Schritt 7
Schritt 7.1
Kombiniere und .
Schritt 7.2
Multipliziere beide Seiten mit .
Schritt 7.3
Vereinfache.
Schritt 7.3.1
Vereinfache die linke Seite.
Schritt 7.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 7.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.1.1.2
Forme den Ausdruck um.
Schritt 7.3.2
Vereinfache die rechte Seite.
Schritt 7.3.2.1
Vereinfache .
Schritt 7.3.2.1.1
Wende das Distributivgesetz an.
Schritt 7.3.2.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 7.3.2.1.2.1
Bewege .
Schritt 7.3.2.1.2.2
Mutltipliziere mit .
Schritt 7.3.2.1.3
Stelle und um.