Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere nach .
Schritt 1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2
Schritt 2.1
Differenziere nach .
Schritt 2.2
Differenziere.
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4.2
Addiere und .
Schritt 3
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung.
ist eine Identitätsgleichung.
Schritt 4
Setze gleich dem Integral von .
Schritt 5
Schritt 5.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.4
Wende die Konstantenregel an.
Schritt 5.5
Kombiniere und .
Schritt 5.6
Vereinfache.
Schritt 6
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 7
Setze .
Schritt 8
Schritt 8.1
Differenziere nach .
Schritt 8.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3
Berechne .
Schritt 8.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.3.3
Mutltipliziere mit .
Schritt 8.4
Berechne .
Schritt 8.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.4.3
Bringe auf die linke Seite von .
Schritt 8.5
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 8.6
Stelle die Terme um.
Schritt 9
Schritt 9.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 9.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9.1.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 9.1.3.1
Subtrahiere von .
Schritt 9.1.3.2
Addiere und .
Schritt 9.1.3.3
Subtrahiere von .
Schritt 9.1.3.4
Addiere und .
Schritt 10
Schritt 10.1
Integriere beide Seiten von .
Schritt 10.2
Berechne .
Schritt 10.3
Wende die Konstantenregel an.
Schritt 11
Setze in ein.